

$$(x+2)(x+3)$$

Copyright © 3P 🔊 Learning

Basic arithmetic and algebra Student Book - Series L 2

Contents

Topics	Date completed
Topic 1 - Numbers, fractions and decimals	//
Topic 2 - Conversions between fractions and decimals	//
Topic 3 - Percentages	//
Topic 4 - Scientific notation, significant figures and rounding off	//
Topic 5 - Powers and roots	//
Topic 6 - Combinations of operations	/_/
Topic 7 - Basic algebraic operations	/ /
Topic 8 - Removing grouping symbols	//
Topic 9 - Binomial products	/ /
Topic 10 - The square of a binomial and sum by difference	//
Topic 11 - Substitution	//
Topic 12 - Factorisation	//
Topic 13 - Factorising trinomials	//
Topic 14 - Further factorisation	//
Topic 15 - Basic operations with surds	//
Topic 16 - Simplifying surds	//
Topic 17 - Further products with surds	//
Topic 18 - Special products with surds	//
Topic 19 - Rationalising the denominator	//
Topic 20 - Simplifying algebraic fractions	//
Topic 21 - Addition and subtraction of algebraic fractions	//
Topic 22 - Multiplication and division of algebraic fractions	//
Topic 23 - Linear equations	_/_/_
Topic 24 - Linear inequalities	_/_/_
Topic 25 - Absolute values	//
Topic 26 - Quadratic equations	//
Topic 27 - The quadratic formula	//
Topic 28 - Simultaneous equations – solving by substitution	//
Topic 29 - Simultaneous equations – solving by elimination	_/_/_
Practice Tests	
Topic 1 - Topic test A	//
Topic 2 - Topic test B	//

Author of The Topics and Topic Tests: AS Kalra

Topic 1 - Numbers, fractions and decimals

QUESTION 1 Complete:

- An ______ is a whole number (positive, negative or zero).
- A ______ number is any number that can be expressed in the form $\frac{p}{q}$ where p and q are integers.
- An _____ number cannot be expressed in the form $\frac{p}{q}$
- The ______ is the top part of a fraction.
- The ______ is the bottom part of a fraction.
- An _____ fraction has its numerator greater than its denominator.
- The product of any fraction and its reciprocal is ______.

QUESTION 2 State whether each number is rational or irrational.

- **a** 5 _____ **b** $\sqrt{5}$ ____ **c** $\frac{2}{3}$ ____ **d** 0.35 $\dot{8}$ ____

- e π _____ f 7.12 ____ g 0 ___ h $\frac{22}{7}$ _____

QUESTION **3** Express each fraction in simplest form.

$$a \frac{18}{36} =$$

b
$$6\frac{9}{12} =$$

$$c = \frac{15}{8} =$$

a
$$\frac{18}{36} =$$
 _____ **b** $6\frac{9}{12} =$ _____ **c** $\frac{15}{8} =$ _____ **d** $\frac{34}{4} =$ _____

QUESTION **4** Write down the reciprocal of:

a
$$\frac{1}{2}$$
 b $\frac{4}{5}$ **c** $1\frac{2}{3}$ **d** 6

QUESTION **5** Find, without a calculator.

a
$$1\frac{2}{3} + \frac{3}{5} =$$
 b $2 - \frac{5}{7} =$ _____

b
$$2 - \frac{3}{7} =$$

$$\mathbf{c} \quad \frac{2}{3} \cdot \frac{4}{7} = \underline{}$$

c
$$\frac{2}{3} \cdot \frac{4}{7} =$$
 _____ d $\frac{3}{4} \mid \frac{7}{8} =$ _____

Topic 2 - Conversions between fractions and decimals

QUESTION **1** Change these fractions to decimals.

 $a = \frac{4}{5} =$

b $\frac{1}{8}$

c $\frac{17}{25}$ =

- $d = \frac{5}{9} = \frac{1}{100}$
- $e \frac{6}{11} =$ ______
- $f = \frac{2}{7} =$

QUESTION **2** Change these decimals to fractions in simplest form.

a 0.7 =

b 1.91=

 \mathbf{c} 0.067 =

d 0.24 =

e 2.35 =

f 15.425 =

QUESTION **3** Change these repeating decimals to fractions in simplest form.

a 0.8

b 0.64

c 0.345

- _____
- 1.56 **e** 0.85 **f** 6.783

Topic 3 - Percentages

QUESTION 1

Write each percentage as a fraction in simplest form.

QUESTION **2** Write each percentage as a decimal.

c
$$18\frac{1}{2}\% =$$

a
$$70\% =$$
 b $7\% =$ **c** $18\frac{1}{2}\% =$ **d** $150\% =$

QUESTION **3** Write as a percentage.

a
$$\frac{7}{8} =$$
 b $0.0375 =$ **c** $2\frac{1}{4} =$ **d** $1.45 =$

$$2\frac{1}{4} =$$

QUESTION 4

Find:

b 85% of 975 m

r	125%	٥f	\$6/
L	12270	OΙ	DO4

QUESTION 5 What percentage is:

38 of 76?

b 20 g of 1 kg?

c 75 m	of 2	km
---------------	------	----

QUESTION **6** Find 100% if:

15% is \$2400

b 64% is 3248 m

c 95% is \$1.90

QUESTION **7** Solve these problems.

A shirt is bought for \$39.60 at a shop which is having a sale and is offering 12% off the marked price. What was the marked price?

b Hal is paid \$150 per week plus a commission of 5% of that part of his sales which exceeds \$2000. What is his weekly pay when his sales total \$8500?

000. What was her profit as a percentage of the cost price?

Rachel bought a painting for

\$12 500 and sold it for \$19

Topic 4 - Scientific notation, significant figures and rounding off

QUESTION 1 Express in scientific notation.

QUESTION **2** Write as normal numbers.

a
$$7 \cdot 10^3 =$$

b
$$3.8 \cdot 10^5 =$$

c
$$1.095 \cdot 10^7 =$$

d
$$9 \cdot 10^{-2} =$$

f
$$4.17 \cdot 10^{-6} =$$

g
$$8.7 \cdot 10^{-1} =$$

h
$$4.957 \cdot 10^3 =$$

QUESTION **3** Express each answer in scientific notation.

a
$$2 \cdot 10^5 \cdot 9.8 \cdot 10^{-4} =$$

a
$$2 \cdot 10^5 \cdot 9.8 \cdot 10^{-4} =$$
 ______ **b** $1.69 \cdot 10^3 \mid (1.3 \cdot 10^8) =$ _____

QUESTION 4 Round off correct to one decimal place.

QUESTION 5 Round off correct to three decimal places.

Write correct to two significant figures.

QUESTION **7** Write correct to four significant figures.

Express in scientific notation correct to three significant figures. QUESTION 8

QUESTION 9 Find:

a
$$(2.64)^2 \mid 3.2 \cdot 1.8$$

b 6.3 ·
$$10^3$$
 | $(3 \cdot 10^7 \cdot 4 \cdot 10^{-2})$

giving the answer in scientific notation correct to 2 significant figures.

Topic 5 - Powers and roots

QUESTION 1

Find the value of:

a
$$2^3 =$$

b
$$4^5 =$$

$$c 10^4 =$$

d
$$3^6 =$$

QUESTION 2

Use your calculator to find:

a
$$\sqrt{576}$$
 =

b
$$\sqrt[3]{216}$$
 =

c
$$\sqrt[5]{759375}$$
 =

d
$$\sqrt[8]{5764801}$$
 =

QUESTION **3** Find, correct to two decimal places, the value of:

b
$$3^{\frac{1}{2}}$$
 =

$$c 8^{0.6} =$$

d
$$\sqrt{3.6}$$
 =

e
$$\sqrt[4]{1.827}$$
 =

$$f \sqrt[10]{6.543} =$$

QUESTION **4** Find, without a calculator:

a
$$\sqrt{\frac{4}{9}}$$
 =

$$\mathbf{b} \quad \left(\frac{4}{5}\right)^2 =$$

$$c = \sqrt{0.64} =$$

$$\mathbf{d} \qquad \sqrt{1\frac{7}{9}} =$$

$$\mathbf{e} \quad \left(2\frac{1}{2}\right)^2 =$$

f
$$\sqrt{5\frac{1}{16}} =$$

QUESTION **5**

Write in scientific notation, correct to three significant figures:

b
$$2^{37} =$$

$$c (0.6)^4 =$$

Topic 6 - Combinations of operations

QUESTION 1 Find:

b
$$12 \cdot 2 + 7 \cdot 3$$

e
$$\{(15-3\cdot 9)\mid 6\}\cdot 4+1$$
 f $9\cdot \{(32\mid 8\cdot 3)-7\}$

f
$$9 \cdot \{(32 \mid 8 \cdot 3) - 7\}$$

q
$$9 \cdot 7 \cdot 3 \cdot 0 \cdot 4 + 6$$

h 8
$$|(2 \cdot 3 - 4) - (10 + 5)|$$

h 8
$$| (2 \cdot 3 - 4) - (10 + 5)$$
 i $\{ [12 | (3 \cdot 2) + 7] \cdot 5 | 3 - 8 \} \cdot 4 \}$

QUESTION 2 Find, correct to two decimal places.

a
$$\frac{9.6 + 4.8}{2.5 \cdot 3.7}$$

b
$$\sqrt{5^2 + 9^2}$$

c
$$\sqrt{\frac{2.8+3.6}{2.5+4.9}}$$

 $\sqrt[3]{8.7 \cdot 4.1}$

e
$$\frac{\sqrt{9.6} | 1.81}{4.6 \cdot 1.2}$$

$$f = \frac{2.48}{\sqrt{2.72} \cdot 2.94}$$

QUESTION **3** Give the answer in scientific notation, to four significant figures.

a
$$3.65 \cdot 10^8 \cdot 4.61 \cdot 10^5$$

$$\mathbf{b} = \frac{2.3 \cdot 10^7}{3.1 \cdot 10^8 \mid (2.4 \cdot 10^{-3})}$$

$$c \quad \frac{1.15 \cdot 10^6 + 7.9 \cdot 10^5}{9.35 \cdot 10^{-4}}$$

QUESTION 4 Answer as a fraction.

a
$$\frac{1}{7+6\cdot 2}$$

$$\mathbf{b} \quad \frac{\frac{2}{3} + \frac{3}{4}}{\frac{3}{5} - \frac{1}{2}}$$

$$\mathbf{c} \quad \frac{\left(\frac{1}{2}\right)^2 - \left(\frac{3}{5}\right)^3}{\left(\frac{2}{3}\right)^4}$$

Topic 7 - Basic algebraic operations

QUESTION **1** Simplify where possible.

a
$$2x + 7x - 3x =$$

c
$$9t - t =$$

e
$$6a + 4b + 3a - 5b =$$

$$q -8m + 2n - mn =$$

i
$$9k + 3m - 7n^2 + 5n + m =$$

a
$$3x \cdot 5 =$$

e
$$y^2 \cdot y^4 =$$

g
$$ab^4 \cdot a^2b^2 =$$

$$i 2a^5bc^3 \cdot 5ab^2c^3 =$$

$$k m^3n^2 \cdot 8m^2n \cdot mn^5 =$$

b
$$8a^2 + 4a^2 =$$

d
$$5k - 6k + 8 =$$

f
$$7x^2 - x - 3x^2 - 2x + 5 =$$

h
$$3p - 9 + q - 7 + p =$$

$$\mathbf{i}$$
 $6x^3 + 3x - 5x^2 + 7x^2 - 4x^3 + x = ______$

b $2a \cdot 3a =$ _____

d
$$6p \cdot 4q =$$

f
$$7e^2 \cdot 2e^5 =$$

h
$$4x^2y^3 \cdot 5xy^6 =$$

QUESTION **3** Simplify.

b
$$9q^9 \mid 3q^3 =$$

b
$$9g^9 \mid 3g^3 =$$
 _____ **c** $12x^3 \mid x =$ _____

d
$$12ab \mid 6b =$$

e
$$15a^{12}b^7 \mid 3a^2b^2 =$$

e
$$15a^{12}b^7 \mid 3a^2b^2 =$$
 f $10x^4yz^5 \mid 5x^3yz^2 =$ _____

$$\mathbf{g} = \frac{6ab}{15a} = \underline{}$$

$$\mathbf{h} \quad \frac{c^3 d^2}{c^4 d} = \underline{\hspace{1cm}}$$

$$\mathbf{g} \quad \frac{6ab}{15a} = \underline{\qquad} \qquad \mathbf{h} \quad \frac{c^3d^2}{c^4d} = \underline{\qquad} \qquad \mathbf{i} \quad \frac{8a^4b^9c^6}{12a^3b^8c^7} = \underline{\qquad}$$

$$\mathbf{j} = \frac{9e^4f^9}{12e^7fa} = \frac{1}{12e^7fa}$$

$$k = \frac{6x^2y^4}{2xy^2} =$$

$$\mathbf{j} \quad \frac{9e^4f^9}{12e^7fq} = \underline{\qquad} \qquad \mathbf{k} \quad \frac{6x^2y^4}{2xy^2} = \underline{\qquad} \qquad \mathbf{l} \quad \frac{3x^2y^3}{6x^2y^3} = \underline{\qquad}$$

QUESTION **4** Find:

a
$$4(x^3)^2 =$$

b
$$4(x^3)^2 =$$

$$(x^2y^4)^3 =$$

a
$$4(x^3)^2 =$$
 _____ **b** $4(x^3)^2 =$ ____ **c** $(x^2y^4)^3 =$ ____ **d** $7(pq)^6 =$ ____

e
$$(a^3bc^2)^2 =$$
 _____ **f** $(2p^4q^7)^5 =$ _____ **g** $5(xy^5z^2)^4 =$ ____ **h** $(3m^2n)^2 =$ _____

$$(2p^4q^7)^5 =$$

$$5(xy^5z^2)^4 =$$

h
$$(3m^2n)^2 =$$

QUESTION **5** Simplify:

a
$$8x^2 + 5x \cdot 3x =$$

b
$$(2ab^2)^3 \cdot 3(a^2b)^3 =$$

b
$$(2ab^2)^3 \cdot 3(a^2b)^3 =$$
 c $12x^{12} \mid (2x^2 \cdot 3x^3) =$

$$\frac{3a^2b \cdot 4ab}{6a^2b^2 \mid 2b}$$

Topic 8 - Removing grouping symbols

QUESTION **1** Expand.

a
$$2(x + 7) =$$

b
$$3(a-5) =$$

c
$$4(m-n) =$$

d
$$5(2k+1) =$$

e
$$7(3x + 2y) =$$

f
$$9(xy - 3z) =$$

$$\mathbf{g} \quad x(x+4) = \underline{\hspace{1cm}}$$

h
$$a(a-1) =$$

i
$$e(e+f) =$$

j
$$t(3t - 2u) =$$

$$\mathbf{k}$$
 $p^2(p+6q) =$

$$l n(n^2 - 5) =$$

$$\mathbf{m}$$
 4a(2a + 7) = ______

$$5k^2(3k-2m) =$$

n
$$5k^2(3k-2m) =$$
 o $ab(a^2b-cd) =$

$$\mathbf{p}$$
 6(a + b - c) = _____

q
$$4a(a-b-c) =$$

QUESTION **2** Expand.

a
$$-3(t+4) =$$

b
$$-5(3a-7) =$$

b
$$-5(3a-7) =$$
 c $-2(6x-5y) =$ _____

d
$$-e(e+2) =$$

e
$$-a(b-c) =$$

e
$$-a(b-c) =$$
 _____ **f** $-3x(2x+7) =$ _____

$$\mathbf{g} -x^2(x+5y) = \underline{\hspace{1cm}}$$

$$-4p^2(p^2-q^2) = \underline{\hspace{1cm}}$$

h
$$-4p^2(p^2-q^2) =$$
 ______ **i** $-5ab(a^2b^2+b) =$ _____

$$\mathbf{j}$$
 -7(5 - a - b + c) = _____

$$-a^2b(ab-a+b) =$$

QUESTION **3** Expand.

$$a -(2 - a) =$$

b
$$-(x+4) =$$

b
$$-(x+4) =$$
 _____ **c** $-(3p-7q) =$ _____

d
$$-(t+1) =$$

$$e -(a - b) =$$

e
$$-(a-b) =$$
 _____ **f** $-(2x^2-1) =$ _____

$$\mathbf{g} - (2a + b - c) =$$

g
$$-(2a+b-c) =$$
 ______ **h** $-(x^3-3x^2+5x-2) =$ _____

a
$$4(p-8) + 3p - 17$$

b
$$5(x^2 - 2x + 3) + x - 6$$

d
$$x(x+5) + 7(x+5)$$

e
$$2y(y+4) - 5(y+4)$$

f
$$3x(x+y) - (2x-y)$$

$$\mathbf{g}$$
 8a(2a - 3b) + 4b(4a - 5b)

h
$$e(e-1)-6(e-1)$$

$$x^2(x^3-1)+4x(3x^2+2)$$

j
$$2a^2b^2(4a^2b + 3ab^2) - 5a^2b(a^2b^2 - ab^3)$$

Topic 9 - Binomial products

QUESTION **1** Expand.

a
$$(a + 7)(b + 6)$$

b
$$(2y + 5)(3m - 4n)$$

c
$$(6p - 11q)(9x - 2y)$$

d
$$(x+4)(x+3)$$

e
$$(a+7)(a-5)$$

f
$$(e-8)(e+2)$$

$$\mathbf{g} \quad (p-6)(p-9)$$

h
$$(x + y)(x + 2y)$$

i
$$(3x - 2)(x + 5)$$

$$\mathbf{j}$$
 $(5m+4)(2m-4)$

k
$$(3a - 7b)(2a - b)$$

$$(1 + 2a)(1 - 3a)$$

$$\mathbf{m}$$
 $(x^2 + 3)(x + 9)$

n
$$(n^3 - 6)(n^2 + 5)$$

o
$$(3x^3 + 4)(2x - 7)$$

QUESTION **2** Expand and simplify.

a
$$(n+4)(n-2)+7n-2$$

b
$$(x-9)(x-1)-(x^2-9)$$

c
$$a^2b^2 - (ab + c)(b - ac)$$

d
$$(x+5)(x+4) + (x+3)(x+2)$$

e 12 -
$$(y + 4)(y + 3)$$

f
$$(a-3b)(a+2)-(2a+5)(b-3)$$

QUESTION **3** Subtract 7a - 3b from the product of 6a + 5 and 2b - 7

a
$$(5a^2 + 3)(a^2 + 2a + 1)$$

b
$$(x^2 - x + 3)(x^2 + 3x - 5)$$

Topic 10 - The square of a binomial and sum by difference

QUESTION 1 Find:

a
$$(x + 8)^2 =$$

c
$$(t+1)^2 =$$

$$e (2p + 7)^2 =$$

$$\mathbf{g} \quad (4 - ab)^2 = \underline{\hspace{1cm}}$$

$$i (pq + r)^2 =$$

$$k (3a^2 - 1)^2 =$$

$$\mathbf{m} (2ab + 3c)^2 =$$

$$\mathbf{m} \quad (2ab + 3c)^2 = \underline{\hspace{1cm}}$$

b
$$(y-5)^2 =$$

d
$$(m-n)^2 =$$

$$f (3x - 2y)^2 =$$

h
$$(1-7x)^2 =$$

$$\mathbf{j} \quad (2h^3 + 9)^2 = \underline{}$$

$$l (5a^2 + b^2c)^2 = \underline{\hspace{1cm}}$$

$$\mathbf{n} \quad (4x^2y - 2z^2)^2 = \underline{\hspace{1cm}}$$

QUESTION **2** Fill in the missing term so that each expression is a perfect square.

a
$$x^2 + 14x +$$

b
$$e^2 - 20e +$$

c
$$a^2 - 18ab +$$

d
$$k^2 + 2k +$$

e
$$4p^2 + 12p +$$

f
$$9y^2 - 42y +$$

h
$$b^2$$
 + _____ + 36
k x^4 - $9x^2$ + _____

i _____ + 22t + 121
l
$$a^2b^2$$
 + _____ + 1

QUESTION **3** Expand:

a
$$(a+5)(a-5) =$$

c
$$(2x + 11)(2x - 11) =$$

e
$$(5p + 1)(5p - 1) =$$

$$(5p + 1)(5p - 1) =$$

$$\mathbf{g} \quad (6y - 7z)(6y + 7z) = \underline{\hspace{1cm}}$$

$$i (1+h)(1-h) =$$

$$\mathbf{k} \quad (ab - cd)(ab + cd) = \underline{\hspace{1cm}}$$

$$\mathbf{m}$$
 $(5 - m^2)(5 + m^2) = \underline{\hspace{1cm}}$

b
$$(k-3)(k+3) =$$

d
$$(3p+q)(3p-q) =$$

$$f(2-a)(2+a) =$$

h
$$(a^2 - bc)(a^2 + bc) =$$

$$\mathbf{j}$$
 $(x^2 + 4)(x^2 - 4) = \underline{}$

$$(e^3 + f^2)(e^3 - f^2) = \underline{\hspace{1cm}}$$

$$\mathbf{n} \quad (a^2bc - de^2)(a^2bc + de^2) = \underline{\hspace{1cm}}$$

a
$$(x+7)(x-7)+(x+3)^2$$

b
$$(2a + 1)(a - 1) + (3a - 1)^2$$

c
$$(6m - 5n)^2 + (6m + 5n)^2$$

d
$$(3a - 2b)(3a + 2b) - 3a(a - 2b)$$

e
$$(2x-5)^2-(2x+5)(2x-5)$$

f
$$(4x + 3y)(4x - 3y) - (5x - 3y)^2$$

Topic 11 - Substitution

QUESTION **1** Complete:

a
$$y = 3x - 5$$

when
$$x = 4$$

d
$$m = 3n^2$$

when
$$n = 2$$

b
$$b = 7 - 4a$$

e $y = ax^2$

when
$$a = 3$$

when a = 7 and x = -2

c $p = q^2 + q$

when q = 7

$$\mathbf{f} \quad v = u + at$$

when
$$u = 5$$
, $a = 10$ and $t = 6$

QUESTION **2** If $y = 2x^3 - 7x^2 + 5x - 3$ find y when:

a
$$x = 1$$

b
$$x = -1$$

c
$$x = \frac{1}{2}$$

QUESTION **3** Find the value of y when x = -3 if:

a
$$y = \sqrt{25 - x^2}$$

b
$$y = \frac{x-1}{x+1}$$

c
$$y = \sqrt[3]{\frac{24x^2}{125}}$$

In the formula $N = \frac{A}{(1+r)^n}$ find (correct to one significant figure): QUESTION 4

a *N* if
$$A = 80 000$$
, $r = 0.05$ and $n = 6$

b
$$r \text{ if } N = 5000, A = 9000 \text{ and } n = 10$$

Topic 12 - Factorisation

QUESTION **1** Factorise:

b
$$3p - 21 =$$

c
$$4x + 20 =$$

e
$$6a + 6b =$$

f
$$x^2 - 5x =$$

g
$$ab + 9a =$$

h
$$2y^2 + 7y =$$

i
$$3k^2 - 9k =$$

$$j 7n^2 - 14n =$$

k
$$10p^2 + 15pq =$$

$$l m^3 - m^2 =$$

$$\mathbf{m}$$
 $a^3b^2 + a^2b^3 =$ ______

n
$$9e - 63e^2 =$$
 o $abc + bc =$ _____

n
$$9e - 63e^2 =$$

$$\mathbf{r}$$
 5a + 15b + 10c = _____

s
$$8p + 12q - 16r - 20 =$$

$$t x^2y + xy + x =$$

u
$$12a^4 - 3a^3 - 6a^2 + 9a =$$

QUESTION **2** Factorise these differences of two squares.

a
$$x^2 - 25 =$$

b
$$a^2 - 36 =$$

$$e^2 - 1 =$$

d
$$p^2 - 100 =$$

e
$$9 - n^2 =$$

$$f k^2 - l^2 =$$

$$\mathbf{g} = 4m^2 - 49 =$$

h
$$9u^2 - 1 =$$

i
$$16p^2 - 81q^2 =$$

$$\mathbf{k} \quad a^2b^2 - 9c^2 =$$

$$l 25x^2y^2 - 16z^6 =$$

QUESTION **3** Factorise fully.

a
$$2x^2 - 8$$

b
$$ap^2 - aq^2$$

c
$$7 - 7v^2$$

QUESTION **4** Factorise by grouping.

a
$$x^2 + 8x + ax + 8a$$

b
$$pq - 7p + qr - 7r$$

 $a^2 + ab + a + b$

d 8am - 12an + 2bm - 3bn

 $k^2 + ky - 3k - 3y$

 \mathbf{f} ac - bc - ad + bd

 $6k^2 + 3k + 4km + 2m$

h xy - 4y - x + 4

Topic 13 - Factorising trinomials

QUESTION 1 Factorise these trinomials.

a
$$x^2 + 9x + 20 =$$

c
$$p^2 - 11p + 30 =$$

e
$$n^2 + 2n - 35 =$$

$$\mathbf{g} \quad k^2 - 6k - 16 = \underline{}$$

$$h^2 + 8hi + 15i^2 =$$

$$\mathbf{k}$$
 27 - 6t - $t^2 =$

m
$$d^2 - 14d + 48 =$$

o
$$z^2 + 8z + 16 =$$

b
$$a^2 + 8a + 12 =$$

d
$$m^2 - 5m + 6 =$$

f
$$g^2 - 3g - 10 =$$

h
$$y^2 + 4y - 5 =$$

$$\mathbf{j}$$
 $b^2 - 9bc + 18c^2 =$

$$e^2 - e - 12 =$$

$$\mathbf{n} \quad q^2 - 9q - 22 = \underline{}$$

QUESTION **2** Factorise by first taking out a common factor.

a
$$2x^2 + 18x + 28$$

b
$$3n^2 + 9n - 12$$

c
$$5p^2 - 50p + 105$$

QUESTION **3** Factorise.

a
$$2x^2 + 7x + 6$$

b
$$3a^2 - 10a + 8$$

c
$$2p^2 - 5p - 25$$

 $5m^2 + 33m - 14$

e
$$4a^2 + 19a + 12$$

f
$$6t^2 - 41t - 7$$

 $6a^2 + 13a + 6$

 $4p^2 - 4p - 15$

h
$$12x^2 + 7x + 1$$

$$i 9m^2 - 34m + 21$$

k
$$24x^2 + 14x - 3$$

$$24n^2 - 11n - 18$$

m $4a^2 + 28a + 49$

n
$$5 - 7p + 2p^2$$

o
$$10x^2 + 11xy - 6y^2$$

Topic 14 - Further factorisation

QUESTION **1** Write each trinomial as a perfect square.

a
$$x^2 + 10x + 25 =$$

b
$$a^2 - 24a + 144 =$$

$$e^2 - 12ef + 36f^2 =$$

d
$$4x^2 + 12x + 9 =$$

QUESTION **2** Factorise each sum or difference of two cubes.

a
$$x^3 + 8 =$$

b
$$27 - y^3 =$$

c
$$8a^3 + 1 =$$

d
$$27x^3 - 8y^3 =$$

e
$$125p^3 - 64q^3r^3 =$$

$$f x^9 + 1000 =$$

QUESTION **3** Factorise.

a
$$x^2 - 9x$$

b
$$x^2 - 9$$

c
$$x^2 - 9x + 14$$

d
$$a^3 - 27$$

e
$$a^3 + 9a^2 + 3a + 27$$

f
$$9a^2 + 18a + 5$$

$$\frac{16e^2 - 49f^2}{16e^2 - 49f^2}$$

h
$$e^2 - 14e + 49$$

i
$$49e^2 + 49$$

$$\mathbf{j} = x^3 + 6x^2$$

$$k = 1 - 4a^2$$

$$9 + 3p - 3q - pq$$

QUESTION **4** Factorise fully.

a
$$x^3 - 9x$$

b
$$x^3 - 2x^2 - 15x$$

c
$$a^4 - 16$$

d
$$5 - 5x^3$$

e
$$x^2 - 25 + xy - 5y$$

f
$$4x^2 - 20x + 16$$

$$\mathbf{g} = 2ax + 6a - 8x - 24$$

h
$$x^3 - 6x^2 - 4x + 24$$

i
$$x^4 + x^3 - x - 1$$

Topic 15 - Basic operations with surds

QUESTION 1 Simplify where possible.

a
$$\sqrt{3} + \sqrt{3} =$$

b
$$2\sqrt{5} + 3\sqrt{5} =$$

c
$$6\sqrt{7} - 4\sqrt{7} =$$

d
$$5\sqrt{6} + \sqrt{6} =$$

e
$$\sqrt{11} + \sqrt{11} =$$

f
$$8\sqrt{10} - \sqrt{10} =$$

$$\mathbf{q} \quad \sqrt{2} + 9\sqrt{2} = \underline{\hspace{1cm}}$$

h
$$\sqrt{5} - \sqrt{5} =$$

i
$$\sqrt{2} + \sqrt{3} =$$

$$\mathbf{i} \quad -4\sqrt{17} + 7\sqrt{17} = \underline{}$$

k
$$9\sqrt{10} - 8\sqrt{10} =$$

m
$$3\sqrt{7} + 3\sqrt{5} =$$

$$n \sqrt{3} - 7\sqrt{3} =$$

o
$$6\sqrt{2} - 2\sqrt{6} =$$

$$\mathbf{p} \quad 8\sqrt{2} - 3\sqrt{2} + 4\sqrt{2} + \sqrt{2} = \underline{}$$

$$\mathbf{q} \quad 9\sqrt{7} - \sqrt{7} - 3\sqrt{7} + 2\sqrt{7} = \underline{}$$

Simplify by collecting like surds.

a
$$7\sqrt{3} + 5\sqrt{2} + 2\sqrt{3} =$$

b
$$\sqrt{7} + 4\sqrt{5} - 3\sqrt{7} + \sqrt{5} =$$

c
$$8\sqrt{7} - 3\sqrt{7} + 7 - 2\sqrt{7} =$$

d
$$3\sqrt{6} + 5 + 9\sqrt{3} - 2\sqrt{3} - \sqrt{6} =$$

e
$$6 + \sqrt{2} + \sqrt{6} + 3\sqrt{2} + 3 =$$

$$f -2\sqrt{5} + 7\sqrt{2} - 3\sqrt{5} + 4\sqrt{2} =$$

$$\mathbf{g} \quad 3\sqrt{10} - \sqrt{5} - 5\sqrt{10} + 8 = \underline{}$$

h
$$\sqrt{3} - \sqrt{6} + 2\sqrt{3} - 7\sqrt{6} + \sqrt{2} =$$

QUESTION 3 Find these products.

a
$$\sqrt{2} \cdot \sqrt{3} =$$

b
$$\sqrt{7} \cdot \sqrt{5} =$$

b
$$\sqrt{7} \cdot \sqrt{5} =$$
 _____ **c** $\sqrt{11} \cdot \sqrt{2} =$ _____

d
$$\sqrt{10} \cdot \sqrt{7} =$$

e
$$\sqrt{13} \cdot \sqrt{6} =$$

$$\mathbf{f} \quad \sqrt{5} \cdot \sqrt{11} = \underline{}$$

g
$$2\sqrt{3} \cdot \sqrt{2} =$$

h
$$4\sqrt{5} \cdot \sqrt{3} =$$

$$i - \sqrt{7} \cdot 2\sqrt{2} =$$

$$\mathbf{j}$$
 $3\sqrt{5} \cdot 4\sqrt{2} =$

$$\mathbf{k} \quad -9\sqrt{11} \cdot 7\sqrt{7} = \underline{}$$

$$\mathbf{l} -6\sqrt{6} \cdot -5\sqrt{5} =$$

$$\mathbf{n} \quad 2\sqrt{5} \cdot 3\sqrt{3} \cdot 10\sqrt{7} = \underline{}$$

QUESTION 4

a
$$\sqrt{6} | \sqrt{2} =$$

b
$$\sqrt{10} \mid \sqrt{5} =$$

c
$$\sqrt{87} | \sqrt{3} =$$

d
$$6\sqrt{6} \mid 3\sqrt{3} =$$

e
$$-12\sqrt{14} \mid -3\sqrt{7} =$$

$$f -9\sqrt{30} | 3\sqrt{5} =$$

g
$$10\sqrt{22} \mid -\sqrt{2} =$$

h
$$18\sqrt{5} \mid 9\sqrt{5} =$$

i
$$8\sqrt{35}$$
 $|8\sqrt{7}| =$

j
$$\sqrt{28} | \sqrt{7} =$$

k
$$9\sqrt{27} | \sqrt{3} =$$

$$16\sqrt{75} | 8\sqrt{3} =$$

$$\mathbf{m} = \frac{\sqrt{15}}{\sqrt{3}} = \underline{\hspace{1cm}}$$

$$\frac{8\sqrt{10}}{\sqrt{2}} =$$

$$0 \frac{\sqrt{7}}{\sqrt{21}} =$$

Topic 16 - Simplifying surds

QUESTION **1** Simplify:

a
$$\sqrt{8} =$$

b
$$\sqrt{45} =$$

$$c \sqrt{28} =$$

d
$$\sqrt{700} =$$

e
$$\sqrt{98}$$
 = _____

$$f \sqrt{32} =$$

$$g 3\sqrt{18} =$$

h
$$5\sqrt{27} =$$

$$i -2\sqrt{300} =$$

QUESTION 2 Simplify:

a
$$\sqrt{8} + \sqrt{18}$$

b
$$\sqrt{75} - \sqrt{12}$$

c
$$\sqrt{500} + \sqrt{20}$$

d
$$7\sqrt{24} + \sqrt{54}$$

e
$$2\sqrt{147} - 3\sqrt{243}$$

f
$$-6\sqrt{32} + 5\sqrt{50}$$

$$4\sqrt{125} - 2\sqrt{45} - 3\sqrt{175}$$

h
$$7\sqrt{2} - 3\sqrt{96} + 8\sqrt{8} - \sqrt{600}$$

QUESTION 3 Find:

a
$$(\sqrt{3})^2 =$$

b
$$(\sqrt{10})^2 =$$

$$(\sqrt{5})^2 =$$

a
$$(\sqrt{3})^2 =$$
 _____ b $(\sqrt{10})^2 =$ ____ c $(\sqrt{5})^2 =$ ____ d $(\sqrt{37})^2 =$ ____

e
$$(3\sqrt{2})^2 =$$
 _____ f $(2\sqrt{7})^2 =$ ____ g $(4\sqrt{3})^2 =$ ____ h $(10\sqrt{10})^2 =$ ____

$$f (2\sqrt{7})^2 =$$

$$\mathbf{g} \quad \left(4\sqrt{3}\right)^2 = \underline{\qquad}$$

h
$$(10\sqrt{10})^2 =$$

QUESTION **4** Express as entire surds.

a
$$2\sqrt{3}$$

b
$$7\sqrt{2}$$

c
$$9\sqrt{5}$$

d
$$6\sqrt{6}$$

f
$$8\sqrt{10}$$

g
$$4\sqrt{11}$$

h
$$10\sqrt{7}$$

Topic 17 - Further products with surds

QUESTION **1** Find these products and simplify.

a
$$\sqrt{12} \cdot \sqrt{3} =$$

b
$$\sqrt{2} \cdot \sqrt{8} =$$

$$\mathbf{c} \quad 3\sqrt{6} \cdot \sqrt{24} = \underline{}$$

$$\mathbf{d} \quad \sqrt{6} \cdot \sqrt{2} = \underline{}$$

e
$$\sqrt{3} \cdot \sqrt{21} =$$

$$\mathbf{f} \quad \sqrt{10} \cdot \sqrt{15} = \underline{}$$

$$\mathbf{g} \quad 2\sqrt{3} \cdot 3\sqrt{6} =$$

h
$$4\sqrt{5} \cdot -2\sqrt{10} =$$

i
$$7\sqrt{14} \cdot \sqrt{21} =$$

QUESTION **2** Expand:

a
$$2(\sqrt{3}+\sqrt{5})$$

b
$$5(2\sqrt{7}-\sqrt{6})$$

c
$$-8(3\sqrt{10}-2\sqrt{2})$$

d
$$\sqrt{3}(\sqrt{7}-\sqrt{2})$$

e
$$3\sqrt{2}(8\sqrt{3}+7)$$

f
$$4\sqrt{5}(\sqrt{7}-3\sqrt{6})$$

$$\mathbf{g} = \sqrt{5} \left(\sqrt{5} + 3 \right)$$

h
$$2\sqrt{2}\left(\sqrt{7}-\sqrt{2}\right)$$

i
$$3\sqrt{6}(9-2\sqrt{6})$$

$$\mathbf{j} \qquad \sqrt{2} \left(\sqrt{6} - \sqrt{2} \right)$$

k
$$3\sqrt{3}(\sqrt{15}+2\sqrt{5})$$

$$\sqrt{6}\left(\sqrt{3}-2\sqrt{2}\right)$$

QUESTION **3** Expand these binomial products.

a
$$\left(\sqrt{7}-\sqrt{3}\right)\left(2-\sqrt{2}\right)$$

b
$$(9 + 2\sqrt{5})(2\sqrt{3} - 5\sqrt{2})$$

a
$$(7 + 5\sqrt{10})(3\sqrt{10} - 4)$$

b
$$(3\sqrt{2} - 2\sqrt{7})(5\sqrt{2} + \sqrt{7})$$

c
$$\left(\sqrt{3} + \sqrt{5}\right)\left(\sqrt{6} + \sqrt{5}\right)$$

d
$$(9-3\sqrt{2})(\sqrt{6}-7\sqrt{2})$$

Topic 18 - Special products with surds

QUESTION **1** Expand and simplify.

a
$$\left(\sqrt{3} + \sqrt{2}\right)^2$$

b
$$(7 - \sqrt{5})^2$$

c
$$(5 + \sqrt{3})^2$$

d
$$\left(\sqrt{2}-\sqrt{7}\right)^2$$

e
$$(3\sqrt{5} - 2\sqrt{6})^2$$

f
$$(4\sqrt{3}-11)^2$$

g
$$(6\sqrt{2} + \sqrt{5})^2$$

h
$$(5\sqrt{10}-1)^2$$

QUESTION 2 Finds

$$\mathbf{a} \quad \left(\sqrt{7} + \sqrt{3}\right) \left(\sqrt{7} - \sqrt{3}\right)$$

b
$$(8-\sqrt{2})(8+\sqrt{2})$$

c
$$(\sqrt{3} + 4)(\sqrt{3} - 4)$$

$$\mathbf{d} \quad \left(\sqrt{5} - \sqrt{2}\right) \! \left(\sqrt{5} + \sqrt{2}\right)$$

e
$$(\sqrt{6} + 1)(\sqrt{6} - 1)$$

f
$$(2\sqrt{7} + 3)(2\sqrt{7} - 3)$$

g
$$(3\sqrt{10} - \sqrt{6})(3\sqrt{10} + \sqrt{6})$$

h
$$(2\sqrt{3} + 3\sqrt{2})(2\sqrt{3} - 3\sqrt{2})$$

i
$$(7\sqrt{5} + 3\sqrt{3})(7\sqrt{5} - 3\sqrt{3})$$

j
$$(4\sqrt{6}-9)(4\sqrt{6}+9)$$

k
$$(2\sqrt{2} + 4\sqrt{3})(2\sqrt{2} - 4\sqrt{3})$$

$$(\sqrt{11}-5\sqrt{2})(\sqrt{11}+5\sqrt{2})$$

Topic 19 - Rationalising the denominator (1)

QUESTION 1 Rationalise the denominator.

$$\mathbf{a} \quad \frac{1}{\sqrt{3}} = \underline{\hspace{1cm}}$$

b
$$\frac{2}{\sqrt{5}} =$$

$$\mathbf{c} \quad \frac{\sqrt{6}}{\sqrt{7}} = \underline{}$$

$$\mathbf{d} \quad \frac{6}{\sqrt{6}} = \underline{}$$

e
$$\frac{8}{\sqrt{2}} =$$

$$f = \frac{5}{\sqrt{10}} =$$

$$\mathbf{g} \quad \frac{\sqrt{5}}{\sqrt{11}} = \underline{}$$

$$\frac{9}{\sqrt{15}} =$$

$$\mathbf{i} \quad \frac{\sqrt{3}}{\sqrt{6}} = \underline{}$$

QUESTION **2** For each binomial surd write the conjugate.

a
$$\sqrt{7} + \sqrt{2}$$

b
$$3 - \sqrt{5}$$

c
$$4\sqrt{3} - 3\sqrt{6}$$
 d $\sqrt{10} - 7$

d
$$\sqrt{10} - 7$$

e
$$2\sqrt{6} + 5$$

f
$$8\sqrt{2} - 7$$

g
$$1-4\sqrt{7}$$

h
$$3\sqrt{11} + 5\sqrt{5}$$

Show that the product of each binomial surd with its conjugate is rational.

a
$$2 + \sqrt{3}$$

b
$$3\sqrt{5} - 4\sqrt{2}$$

Topic 19 - Rationalising the denominator (2)

QUESTION **1** Rationalise the denominator.

a
$$\frac{1}{5-\sqrt{2}}$$

b
$$\frac{5}{\sqrt{6} + \sqrt{2}}$$

$$c \quad \frac{\sqrt{3} + \sqrt{2}}{\sqrt{5} + \sqrt{3}}$$

 $\mathbf{d} \quad \frac{\sqrt{2} - 1}{\sqrt{2} + 1}$

 $e \quad \frac{6}{2\sqrt{2} + \sqrt{5}}$

 $f \quad \frac{4\sqrt{2} + \sqrt{5}}{2\sqrt{5} - \sqrt{6}}$

QUESTION **2** Find the value of the integers x, y and z if:

$$\mathbf{a} \quad \frac{6}{2\sqrt{7} - 5} = x + y\sqrt{z}$$

b
$$\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} = x + y\sqrt{z}$$

Topic 20 - Simplifying algebraic fractions

QUESTION 1 Simplify:

a
$$\frac{8x}{12} =$$

b
$$\frac{6a}{9a} =$$
 ______ **c** $\frac{5e}{7e} =$ _____

$$\mathbf{c} \quad \frac{5e}{7e} = \underline{\hspace{1cm}}$$

d
$$\frac{4k}{12k} =$$

$$e \frac{9 p}{18} =$$

d
$$\frac{4k}{12k} =$$
 _____ f $\frac{6h}{2} =$ _____

$$g = \frac{10e}{e} =$$

$$h \frac{6a}{3a^2} =$$

$$\mathbf{h} = \frac{6a}{3a^2} = \frac{9m^2}{9} = \frac{1}{9}$$

$$j = \frac{12 n^2}{3 n} = \underline{\hspace{1cm}}$$

$$k \frac{9ab}{12h} =$$

$$l = \frac{5x^2}{15x^3} =$$

$$\mathbf{m} \quad \frac{abc}{a^2bc^3} = \underline{\hspace{1cm}}$$

$$n \frac{8pq}{2p^2} =$$

$$\mathbf{n} = \frac{8 pq}{2 p^2} = \underline{\qquad \qquad } \mathbf{o} = \frac{3 xy}{9 x^2 y} = \underline{\qquad }$$

$$p \frac{10 m^2}{5 mn} =$$

$$q = \frac{7 x^2 y}{5 x v^2} =$$

$$q = \frac{7 x^2 y}{5 x y^2} = \frac{2a^2 b^2 c}{4a^2 b^2 c} = \frac{2a^2 b^2 c}{4a^2 b^2 c}$$

$$s \frac{4e^3f^7}{8e^8f^8} = \underline{\hspace{1cm}}$$

$$t = \frac{16 \, mn^2}{20 \, m^2 n} =$$

QUESTION **2** Factorise and simplify:

a
$$\frac{2x+8}{4}$$

b
$$\frac{6x+9y}{8x+12y}$$
 c $\frac{12}{16a-4h}$ **d** $\frac{x^2-1}{x^2+x}$

c
$$\frac{12}{16a - 4b}$$

d
$$\frac{x^2-1}{x^2+x^2}$$

e
$$\frac{x^2 + 3x - 18}{x^2 + 9x + 18}$$
 f $\frac{2x^2}{2x^2 - 10x}$

$$f = \frac{2x^2}{2x^2 - 10x}$$

$$g = \frac{9e-6}{3}$$

h
$$\frac{x^2 - 12x + 32}{x^2 + 32}$$

i
$$\frac{5n+1}{20n+4}$$

$$\mathbf{j} = \frac{x}{x^2 - 7x}$$

$$k = \frac{m+4}{m^2+5m+4}$$

$$l = \frac{2m + 6n}{4m + 12n}$$

$$m^2 + 5m + 4$$

$$l = \frac{2m + 6n}{4m + 12n}$$

Topic 21 - Addition and subtraction of algebraic fractions

QUESTION 1 Simplify:

a
$$\frac{x+5}{3} + \frac{2x-4}{3}$$
 b $\frac{7}{x} - \frac{4}{x}$

b
$$\frac{7}{x} - \frac{4}{x}$$

c
$$\frac{3a}{h} + \frac{2a}{c}$$

$$\mathbf{c} \quad \frac{3a}{b} + \frac{2a}{c} \qquad \qquad \mathbf{d} \quad \frac{9n}{m} - \frac{4m}{n}$$

e
$$\frac{e-2}{e+2} - \frac{e-3}{e+2}$$
 f $\frac{6x}{5} - \frac{2y}{7}$

$$f = \frac{6x}{5} - \frac{2y}{7}$$

$$g = \frac{2x}{3} + \frac{5x}{9}$$

h
$$\frac{3a}{4} - \frac{2a}{7}$$

i
$$1-\frac{a}{h}$$

j
$$\frac{a+3}{2} + \frac{a+3}{3}$$

j
$$\frac{a+3}{2} + \frac{a+2}{3}$$
 k $\frac{x-4}{x} - \frac{a+3}{a}$ l $\frac{e+5}{6} - \frac{e-2}{4}$

$$\frac{e+5}{6} - \frac{e-2}{4}$$

Express as a single fraction, leaving the denominator in factorised form.

a
$$\frac{1}{x^2 + 3x - 10} + \frac{1}{x^2 + x - 6}$$
 b $\frac{1}{a^2 - 5a + 4} - \frac{1}{a^2 - 4a}$ **c** $\frac{x + 5}{x^2 + x} + \frac{x + 4}{x^2 - x}$

b
$$\frac{1}{a^2-5a+4}-\frac{1}{a^2-4a}$$

$$\frac{x+5}{x^2+x} + \frac{x+4}{x^2-x}$$

Topic 22 - Multiplication and division of algebraic fractions

QUESTION 1 Find these products.

a
$$\frac{a}{b} \cdot \frac{c}{d}$$

b
$$\frac{x}{2} \cdot \frac{4}{x}$$

c
$$\frac{3t^2}{8u} \cdot \frac{4v}{9t}$$

$$\mathbf{c} \quad \frac{3t^2}{8u} \cdot \frac{4v}{9t} \qquad \qquad \mathbf{d} \quad \frac{x+2}{x+5} \cdot \frac{x+5}{x+2}$$

QUESTION 2 Divide:

a
$$\frac{e}{6} \mid \frac{e}{2} \mid$$

b
$$\frac{n^2}{5m} \mid \frac{m}{n}$$

c
$$\frac{a-2}{a-1}$$
 $\left| \frac{a+2}{a-1} \right|$

c
$$\frac{a-2}{a-1} \mid \frac{a+2}{a-1}$$
 d $\frac{x+5}{2} \mid \frac{x+5}{6}$

QUESTION **3** Simplify:

a
$$\frac{x^2 - 3x}{x + 4} \cdot \frac{x^2 + 4x}{x^2 + 3x - 18}$$

a
$$\frac{x^2 - 3x}{x + 4} \cdot \frac{x^2 + 4x}{x^2 + 3x - 18}$$
 b $\frac{x^2 + 9x + 14}{x^2 + 3x + 2} \cdot \frac{x^2 + 10x + 9}{x^2 + 16x + 63}$ **c** $\frac{a^2 - 9}{a^2 - 9a} \cdot \frac{a^2 - 7a - 18}{a^2 + 5a + 6}$

c
$$\frac{a^2-9}{a^2-9a} \cdot \frac{a^2-7a-18}{a^2+5a+6}$$

QUESTION 4 Simplify:

a
$$\frac{1}{a^2 + 5a + 6} \mid \frac{1}{a^2 + 7a + 12}$$
 b $\frac{a + 2}{a^2 + 3a} \mid \frac{a^2 + 2a}{a + 3}$

b
$$\frac{a+2}{a^2+3a} \mid \frac{a^2+2a}{a+3}$$

c
$$\frac{x^2+6x+5}{x^2+6x+8}$$
 $\left| \frac{x^2+4x+3}{x^2+9x+20} \right|$

Topic 23 - Linear equations

QUESTION 1

Solve:

$$7a - 17 = 46$$

b 8k + 5 = -7

c
$$12 - 5e = 17$$

$$4m - 11 = 3m + 19$$

e 9x + 32 = 45 - 4x

$$f \quad 3(4y - 1) = 81$$

 $\frac{a+9}{7} = 12$

h $\frac{x}{5} - 9 = 1$

 $i \frac{3e}{1} = \frac{2}{3}$

 $\mathbf{j} \qquad 6(2x+5) - 2(5x-4) = 10$

 \mathbf{k} 8*n* - 20 + 3*n* = 16 - 2*n* + *n*

l $\frac{2t-7}{5} = \frac{4-3t}{3}$

 $\mathbf{m} \quad 5(3k+2) - 4(2k-3) = 6(k+7)$

 $n \frac{4x+3}{3x-7} = \frac{5}{13}$

 $o \frac{5e}{7} - \frac{e-1}{4} = 3e - 53$

Topic 24 - Linear inequalities

QUESTION **1** Graph on the given number line.

a
$$x \ge -1$$

QUESTION **2** Solve:

a
$$2x - 1 \le 7$$

b
$$3x > 15 - 2x$$

c
$$\frac{x}{6} + 8 < -2$$

$$\mathbf{d} \qquad \frac{2x-5}{3} \le 9$$

e
$$9x - 2 > 3x + 8$$

f
$$7x + 3 \ge 17 - 3x$$

QUESTION **3** Solve:

a
$$-5x \le 20$$

b
$$-x \ge -4$$

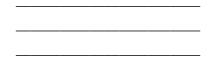
$$c - \frac{x}{2} > 6$$

d
$$11 - 3x < -1$$

$$e \qquad \frac{4-x}{3} \le 2$$

f
$$-8x + 5 \ge 9$$

QUESTION 4 Solve:


b
$$6 - \frac{x}{4} \le 2$$

$$\mathbf{c} \qquad \frac{x}{3} + \frac{2x}{5} \ge 1$$

d
$$4x - 3 \ge 11x + 18$$

$$e \frac{9-2x}{5} < -\frac{1}{2}$$

$$f = \frac{x-6}{7} > 3 - \frac{x}{2}$$

Topic 25 - Absolute values

QUESTION **1** Evaluate:

QUESTION **2** Graph on the given number line.

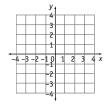
c
$$|x| \ge 1$$

d
$$|x| > 3$$

e
$$|x| \le 4$$

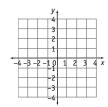
f
$$|x-1|=2$$

g
$$|x+1| > 1$$

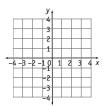

$$|x - 2| < 2$$

$$\xrightarrow{-4 - 3 - 2 - 1 \ 0 \ 1 \ 2 \ 3 \ 4}$$

i
$$|x + 3| \ge 1$$

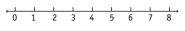

QUESTION **3** Graph on the given number plane.

a
$$|x| = 2$$

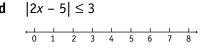


b |v| = 3

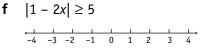
b |x| < 2



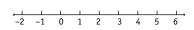
 $\mathbf{c} \quad \mathbf{v} = \mathbf{I}$


QUESTION 4 Solve:

b
$$|5 - 3x| = 2$$


c
$$|4x - 1| = 0$$

e |3x + 2| > 1



g

$$|6x + 3| < 1$$

h $|2x + 2| \ge 3$

i $|3x - 4| \le 2$

Topic 26 - Quadratic equations

Solve: QUESTION 1

a
$$x(x-6) = 0$$

b
$$(x+3)(x-5) = 0$$
 c $(2a-5)(a+7) = 0$

c
$$(2a-5)(a+7)=0$$

$$\mathbf{a} \qquad x^2 + 8x = 0$$

b
$$x^2 - 9x + 20 = 0$$

c
$$x^2 + 11x + 28 = 0$$

$$e^2 + 7e - 30 = 0$$

e
$$15 - 2m - m^2 = 0$$

$$\mathbf{f} \quad p^2 + 16p + 64 = 0$$

a
$$2x^2 - 13x + 15 = 0$$

b
$$14x^2 + x - 4 = 0$$

c
$$15x^2 + 19x + 6 = 0$$

QUESTION 4 Solve:

a
$$x^2 = 10x - 24$$

b
$$x^2 + 5x = 14$$

c
$$(x-8)(x+3) = 42$$

QUESTION **5** Solve by taking square roots.

a
$$(x + 7)^2 = 81$$

b
$$(3x-2)^2=4$$

c
$$(x + 5)^2 = 7$$

Topic 27 - The quadratic formula

QUESTION **1** Solve, leaving the answer in simplest surd form.

a
$$2x^2 - 3x - 33 = 0$$

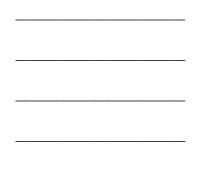
b
$$x^2 - 7x + 5 = 0$$

c
$$2x^2 + 9x + 5 = 0$$

$$\mathbf{d} \quad x^2 + 8x + 3 = 0$$

e
$$x^2 + 10x + 7 = 0$$

f
$$5x^2 - 6x - 1 = 0$$



QUESTION **2** Solve, giving each answer correct to three decimal places.

a
$$3x^2 + 5x - 7 = 0$$

b
$$x^2 - 5x + 5 = 0$$

c
$$3x^2 - 4x - 2 = 0$$

Topic 28 - Simultaneous equations - solving by substitution

QUESTION 1 Solve using the substitution method.

a
$$y = 8x + 15$$

y = 5x + 3

b
$$y = 11x - 7$$

(ii)

(i)

(ii)

c
$$x + y = 5$$

y = 9 - 2x

 	 _	
 	 _	
	_	

d	4x + 3y = 33	(i)

$$y = 5x - 8$$
 (ii)

e
$$7a - 5b + 6 = 0$$

y = 2x + 11

$$a = 4b + 1$$

f
$$8x - 9y = 26$$

$$3x + y = 1$$
 (ii)

 _	 _	
-	-	 -
 =	 -	 _
 -	 _	 _
 _	 -	 _
_	_	
-	-	 _

(i)

(ii)

g
$$2a - b - 18 = 0$$
 (i) $5a - 3b - 48 = 0$ (ii)

6x + 11y = 87

3x + 2y = 12

i	9p - 7q = 31 4p + 3q = 81	(i) (ii)	

Topic 29 - Simultaneous equations - solving by elimination (1)

QUESTION 1 Solve by first adding the two equations.

4x + y = 27

5x - y = 18

- (ii)
- 9x 2y = 13

7x + 2y = 3

- (i) (ii)
- 7a + 6b 107 = 0
 - 5a 6b 25 = 0

(i)

(ii)

QUESTION 2 Solve by first subtracting one equation from the other.

6x + 5y = 17

4x + 5y = 23

- (i)
- (ii)
- 7e 3f + 6 = 0
 - 2e 3f + 21 = 0

(ii)

- 8x + 3y 68 = 0
 - (i) 8x - 9y - 20 = 0(ii)

QUESTION 3 Solve:

- 12p 7q + 1 = 08p + 7q - 11 = 0
- (i) (ii)
- 9a + b = 78

11a + b = 94

- (i) (ii)
- 7x 5y = 1047x + 5y = 64
- (i) (ii)

Topic 29 - Simultaneous equations - solving by elimination (2)

QUESTION 1 Solve:

a
$$10a + 3b = 56$$

b
$$6x + 4y - 58 = 0$$

$$4a + b = 22$$

$$x - 8y + 25 = 0$$

c
$$9x - 5y = 6$$

d
$$9x - 2v - 30 = 0$$

$$3x - 4y = 9 \tag{ii}$$

d	9x - 2y - 30 = 0	(i)
	7x + 5y + 16 = 0	(ii)

e
$$11a - 4b + 83 = 0$$
 (i)

f
$$6x + 11y + 24 = 0$$
 (i) $5x + 4y + 20 = 0$ (ii)

Topic Test PART A

Instructions

This part consists of 15 multiple-choice questions

Each question is worth 1 mark

Calculators may be used

Fill in only ONE CIRCLE for each question

Time allowed: 15 minutes

Total marks = 15

Marks

The value of $\frac{0.23 + 0.8}{0.4 + 0.2}$ is

- (A) 0.515
- (B) 0.63
- (C) 10.23
- **(D)** 12.875

1

Which is correct? $\sqrt{5}$ is ... I real II rational

- (A) both I and II (B) I but not II
- © II but not I
- **(D)** neither I nor II

1

The reciprocal of $2\frac{3}{4}$ is

- (A) $3\frac{1}{3}$ (B) $1\frac{5}{6}$

1

4 $\frac{5}{8}$ as a decimal equals

- (A) 0.58
- (\mathbf{B}) 0.85
- (C) 0.625
- **(D)** none of these

1

The price of dining furniture has been discounted by 15%. If it sold for \$2278, the original price was

- (A) \$1936
- **(B)** \$2428
- **©** \$2620
- **(D)** \$2680

1

Written in scientific notation 0.000 08 equals

- (A) 8 · 10⁵
- (B) 8 · 10⁴
- (C) 8 · 10⁻⁴
- (\mathbf{D}) 8 · 10⁻⁵

1

Rounded off to four significant figures 0.203 561 equals

- **(A)** 0.2356
- **(B)** 0.2036
- © 0.20356
- **(D)** 0.204

1

3⁴ · 3⁵ equals

- (B) 3²⁰
- (\mathbf{D}) 9²⁰

1

The value of 8.2⁻¹ correct to two decimal places is

- (\mathbf{A}) 0.01
- (\mathbf{B}) 0.12
- \bigcirc 0.82
- (\mathbf{D}) 1.22

Topic Test

PART A

The exact value of $\sqrt{1\frac{4}{9}}$ is

- **B** $1\frac{2}{3}$ **C** $\frac{\sqrt{13}}{3}$
- none of these

1

Marks

Expressed as a recurring decimal, $\frac{9}{22}$ equals

- (A) 0.409
- (\mathbf{B}) 0.409
- (C) 0.409
- (\mathbf{D}) 0.4090

1

In scientific notation, correct to three significant figures, the value of 5.62895 · 1015 divided by the product of $4.76 \cdot 10^3$ and $3.9582 \cdot 10^7$ is

- (A) $2.99 \cdot 10^4$ (B) $4.68 \cdot 10^{19}$ (C) $1.42 \cdot 10^8$ (D) $3.35 \cdot 10^{-5}$

1

13 When n = -3, $4n^2$ equals

- (A) -144
- (B) -36 (C) 36
- \bigcirc 144

1

14 When factorised, $2m^2 + 7m - 15$ equals

- (A) (2m-3)(m+5) (B) (2m-3)(m-5) (C) (2m+3)(m-5) (D) (2m+3)(m+5)

1

15 If $\frac{-x}{3} \ge 6$, then

- (A) $x \le -2$ (B) $x \ge -2$ (C) $x \le -18$ (D) $x \ge -18$

1

Total marks achieved for PART A

Topic Test PART B

Instructions

This section consists of 25 questions

Show all necessary working

Time allowed: 1 hour

Total marks = 85

Marks

2

3

3

3

3

16 Express as fractions in simplest form.

a 0.72

- **b** $0.32\dot{5}$

17 Write in scientific notation.

- **a** 840 000 000
- **b** 2000

c 0.000 096

- **18** Write as normal numbers.
 - **a** 3.2 · 10⁵

- **b** $4.8 \cdot 10^{-2}$
- c 6.15 · 10⁻⁴

- **19** Round off correct to two decimal places.
 - **a** 7.3518

b 13.565

c 0.299

- **20** Round off correct to three significant figures.
 - a 0.030 785

- **b** 2 576 482
- **c** 10.03857

- **21** Simplify:
 - **a** $3x^2 + 6x + 4x$
- **b** 9y 5y y
- **c** $12k + 3k^2 + 8 7k + 1$

Topic Test

PART B

21 d
$$7e^2 \cdot 8e + 12e^3$$
 e $-3p^2 + 2p \cdot 4p$

$$e -3p^2 + 2p \cdot 4p$$

f
$$6k \cdot 8k \mid 12k^2$$

Marks 6

22 Expand and simplify.

a
$$3x + 2(8 - x)$$

b
$$6x^2 + 5x - 4(3 - 7x)$$

b
$$6x^2 + 5x - 4(3 - 7x)$$
 c $12(2p - 3) - (4p - 9)$

23 If x = 2, y = -3 and z = 5, find the value of:

a
$$y^2 - x + z$$

$$c = \frac{z-y}{4x}$$

3

24 Expand:

a
$$(x + 7)(x - 4)$$

b
$$(3m+2)(m+1)$$

c
$$(2e-7)^2$$

d
$$(a + 4y)(a - 4y)$$

25 Expand and simplify.

a
$$(2a + 3)(a^2 + 5a - 4)$$

b
$$(3x + 2y)(3x - 2y) - (2x + 3y)^2$$

26 Factorise:

b
$$x^2 - 25$$

c
$$x^2 + 16x + 63$$

d
$$x^3 + 8$$

e
$$3x^2 - 16x + 5$$

f
$$x^2 - 2xy + x - 2y$$

27 Factorise fully.

a
$$5x^3 - 40$$

b
$$2x^2 + 12x + 18$$

c
$$x^4 - 16$$

Topic Test PART B

28 Simplify:

Marks

a
$$4\sqrt{2} + 3\sqrt{2} + 2\sqrt{2}$$
 b $3\sqrt{7} - \sqrt{7}$

b
$$3\sqrt{7} - \sqrt{7}$$

c
$$8\sqrt{3} - \sqrt{5} + 6\sqrt{3} + 2\sqrt{5}$$

d
$$\sqrt{2} \cdot \sqrt{5}$$

e
$$(\sqrt{7})^2$$

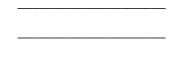
f
$$6\sqrt{2} \cdot 3\sqrt{3}$$

g
$$9\sqrt{10} | 3\sqrt{2}$$

h
$$\sqrt{20}$$

i
$$\sqrt{8} + \sqrt{18}$$

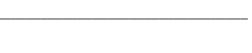
9

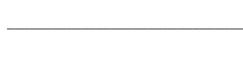

29 Expand and simplify.

a
$$(\sqrt{2} + \sqrt{3})(2\sqrt{3} - \sqrt{5})$$
 b $(2\sqrt{2} - \sqrt{3})^2$

b
$$(2\sqrt{2} - \sqrt{3})^2$$

c
$$(\sqrt{5} + 2)(\sqrt{5} - 2)$$


3


30 Rationalise the denominator.

a
$$\frac{1}{\sqrt{5}}$$

$$\mathbf{b} \quad \frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}}$$

31 Simplify:

$$\mathbf{a} \quad \frac{4a+20}{4}$$

$$\mathbf{b} \quad \frac{x^2 - 1}{x^2 - x}$$

$$\mathbf{c} = \frac{2}{6\,m + 4\,n}$$

3

Topic Test PART B

31 d $\frac{2x}{7} + \frac{3x}{5}$

e $\frac{7e-1}{4} - \frac{e+2}{3}$

Marks

7

 $\mathbf{f} \quad \frac{x^2 + 3x}{x - 2} \cdot \frac{x^2 - 6x + 8}{x^2 - 4x}$

 $g = \frac{1}{n^2 + 8n + 12} \mid \frac{1}{n^2 + n - 2}$

32 Solve:

a 7x - 15 = 3x + 11

b 6(2a-9)-5(a-4)=3a

 $c \frac{4x}{x+3} = \frac{2}{3}$

d $\frac{5m}{2} - \frac{m+3}{5} = 4 - m$

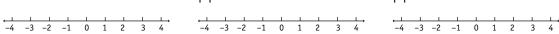
33 Solve:

a $3x + 2 \le 7$

b 8 - 5x > -2

c $\frac{4x-1}{2} \ge 3x+5$

Topic Test PART B


Marks

34 Simplify:

35 Graph on the given number line.

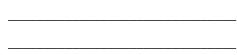
b
$$|x| \le 1$$

b
$$|x| \le 3$$
 c $|x| > 1$

36 Solve:

a
$$|2x-1|=3$$
 b $|x-2| \le 4$ **c** $|3x+1| > 2$

b
$$|x-2| \le 4$$


c
$$|3x + 1| > 2$$

3

37 Solve:

a
$$x^2 + 8x - 20 = 0$$

$$\mathbf{b} \quad 10x^2 - 13x + 3 = 0$$

2

38 Solve using the quadratic formula.

a
$$3x^2 + 7x + 1 = 0$$
 [to 3 d.p.]

b
$$2x^2 - 4x - 7 = 0$$

b
$$2x^2 - 4x - 7 = 0$$
 [simplest surd form]

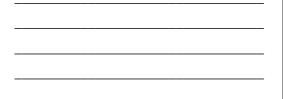
Topic Test PART B

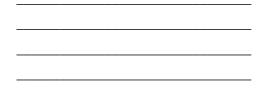
39 Solve the pair of simultaneous equations, using the substitution method.

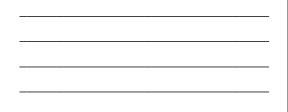
$$6x + 5y = 116$$

$$y = 3x - 2$$

1


Marks


40 Solve the pair of simultaneous equations, using the elimination method.


a
$$3x + y = 26$$

$$5x - y = 46$$

b
$$7a + 3b - 36 = 0$$

 $5a + 2b - 25 = 0$

2

Total marks achieved for PART B

